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Falkner-Skan Solution for Gravity-Driven Film Flow 
of a Micropolar Fluid

 (Penyelesaian Falkner-Skan bagi Aliran Filem Graviti-Terpacu 
dalam Bendalir Mikrokutub)

KARTINI AHMAD, ROSLINDA NAZAR* & IOAN POP

ABSTRACT

In this paper, the steady Falkner-Skan solution for gravity-driven film flow of a micropolar fluid is theoretically investigated. 
The resulting nonlinear ordinary differential equations are solved numerically using an implicit finite-difference scheme. 
The results obtained for the skin friction coefficient as well as the velocity and microrotation or angular velocity profiles 
are shown in table and figures for different values of the material or micropolar parameter K.
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ABSTRAK

Dalam makalah ini, penyelesaian Falkner-Skan mantap bagi aliran filem graviti-terpacu dalam bendalir mikrokutub 
dikaji secara teori. Persamaan pembezaan biasa tak linear yang terhasil diselesaikan secara berangka menggunakan 
skema beza-terhingga tersirat. Keputusan yang diperoleh bagi pekali geseran kulit beserta profil halaju dan profil 
mikroputaran atau halaju sudut dipersembahkan dalam jadual dan rajah untuk beberapa nilai parameter bahan atau 
mikrokutub K.

Kata kunci: Aliran filem graviti-terpacu; bendalir mikrokutub; lapisan sempadan; penyelesaian Falkner-Skan

INTRODUCTION

The concept of classical hydrodynamics is inadequate to 
describe the existence of microscopic elements in a fluid 
due to the local microstructure and intrinsic motion of the 
fluid. Thus the concept of micropolar fluid which was first 
proposed by Eringen (1966) has taken into account the 
microstructure of the fluid and the physical characteristics 
of the fluid itself, i.e. oriented particles suspended in 
a viscous medium undergoing both translational and 
rotational motion. The theory of micropolar fluid has 
received substantial attention during the last few decades 
due to the importance of such fluid in analyzing the 
behaviour of animal blood flow, exotic lubricants, flow 
in capillaries and micro-channels, liquid crystals and 
colloidal fluids. On top of solving the usual transport 
equations for the conservation of mass and momentum 
equations, the micropolar fluid theory requires one to solve 
an additional transport equation representing the principle 
of conservation of local angular momentum. Extensive 
reviews of the theory and applications of micropolar 
fluids can be found in the review articles by Ariman et al. 
(1973, 1974) and the books by Łukaszewicz (1999) and 
Eringen (2001).
	 Fluid flows which are called film flows occur in many 
technical processes as well as in nature. Rain wetted 
roads and erosion are examples of films encountered in 
environment. In industry, we find films in heat exchangers, 
evaporators, condensers, and absorption and coating 

techniques (Kistler & Schweizer 1997; Webb 1994). In 
most systems, the film does not flow over perfectly flat 
surface. Therefore, the gravity- driven film flow is one 
of the most studied systems in hydrodynamics; examples 
are as in the papers by Andersson and Irgens (1988) and 
Andersson and Shang (1998) and the references therein. 
A year later, Andersson and Dahl (1999) studied the 
gravity-driven flow of a viscoelastic liquid film along a 
vertical wall. In addition, rigorous mathematical analysis 
of a boundary layer problem for a third-order nonlinear 
ordinary differential equation which arose in gravity-
driven laminar film flow of power law fluids along vertical 
walls was done by Zhang et al. (2004). Further, Saouli et 
al. (2006) investigated the entropy generation in laminar, 
gravity-driven conducting liquid film with fully developed 
velocity flowing along an inclined heated plate in the 
presence of transverse magnetic field, and Andersson 
et al. (2006) investigated the gravity-driven film flow 
with variable physical properties. On the other hand, the 
study of gravity-driven film flow of a liquid film down 
an inclined wall with three-dimensional doubly periodic 
corrugations was carried out by Luo and Pozrikidis (2007). 
The experimental study of gravity-driven film flow of 
non-Newtonian fluids namely carboxymethyl cellulose 
(CMC) with three different solution concentrations was 
done by Haeri and Hashemabadi (2009), while Lan et al. 
(2010) examined the problem involving three-dimensional 
steady-developing-laminar-isothermal and gravity-
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driven liquid film flow adjacent to an inclined plane. The 
problem was numerically simulated and experimental 
verification was conducted. Very recently, Beg et al. (2011) 
examined numerically the problem of steady, gravity-
driven, incompressible, hydromagnetic, laminar flow 
of a viscous, ellectrically conducting, micropolar liquid 
along an inclined plane subjected to a uniform transverse 
magnetic field. The computations indicate that increasing 
micropolarity will elevate the micro-rotation magnitudes 
but reduces the linear velocity. 
	 The work done by Falkner and Skan (1931) was a 
starting point of exact solutions for boundary layer flow 
in a viscous fluid. The paper considered two-dimensional 
wedge flows by developing a similarity transformation 
method in which the boundary layer partial differential 
equation was reduced to a nonlinear third-order ordinary 
differential equation, which is well-known as the 
Falkner–Skan equation. Later, Hartree (1937) studied this 
equation numerically. There is abundance of literature 
on the solution of the Falkner-Skan equation, such as 
the papers by Rajagopal et al. (1983), Brodie and Banks 
(1986), Asaithambi (1997), Zaturska and Banks (2001), 
Kuo (2003), Pantokratoras (2006) and Ishak et al. (2007), 
among others. Some recent literatures can be found 
in Elgazery (2008) where he solved the Falkner–Skan 
boundary layer equation with the effect of magnetic field 
in a porous medium, while Magyari (2009) considered the 
case of Falkner-Skan flows past stretching boundaries, and 
Abbasbandy and Hayat (2009) studied the two-dimensional 
steady boundary layer flow of an electrically conducting 
viscous fluid in the presence of a magnetic field, to name 
just a few. However, to the best of our knowledge, the 
Falkner-Skan solution for gravity-driven film flow was first 
and only investigated by Andersson and Ytrehus (1985). 
They found that the Falkner-Skan equation can be used to 
solve problem in developing film flow on a vertical wall 
especially in aerodynamic boundary layer for the case of 
m = 1/ 2 which corresponds to flow along a wedge with 
an opening angle 2π/3. Motivated by the work done in 
Andersson and Ytrehus (1985), the present paper will 
consider the Falkner-Skan solution for gravity–driven film 
flow of a micropolar fluid.

ANALYSIS

Consider the steady flow in a gravity-driven thin liquid film 
of a micropolar fluid falling downwards along a smooth 
vertical surface, as shown schematically in Figure 1, where  
x and y are the Cartesian coordinates measured along the 
surface and normal to it, respectively. It is assumed that 
the buoyancy and the surface tension effects are neglected. 
Under these assumptions, the system of boundary layer 
equations governing the problem under consideration 
can be written as (Andersson & Ytrehus 1985; Rees & 
Bassom 1996)

	 	 (1)

	 	 (2)

	 	 (3)

	 	 (4)

and subject to the boundary conditions:

	

	 	 (5)

FIGURE 1. Physical model and coordinate system

where u and v are the velocity components along the 
x and y-axes, respectively, N is the component of the 
microrotation vector normal to the x – y plane, j is the 
microinertia density, γ is the spin gradient viscosity, κ is 
the vortex viscosity, μ is the dynamic viscosity, ρ is the 
fluid density, g is the gravitational acceleration and U(x) 
is the free stream velocity. Further we assume that γ(x, y) 
is given as (Yacob & Ishak 2010): 
								      
	 	 (6)

where Κ = κ/μ is the micropolar or material parameter 
so that the micropolar fluid field can predict the correct 
behaviour in the limiting case when the microstructure 
effects become negligible and the total spin N reduces 
to the angular flow velocity or flow vorticity. It should 
be mentioned that relation (6) has been established by 
Ahmadi (1976) and Kline (1977), and it has been used 
by many researchers working on micropolar fluids. It 
is also worth mentioning that the case K = 0 describes 
the classical Navier-Stokes equations for a viscous and 
incompressible fluid. 
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	 The quasi-one-dimensional flow between the 
momentum boundary layer and the wavefree interface 
bordering the constant-pressure atmosphere is assumed 
to be irrotational (inviscid flow) with downward velocity 
U(x). The one-dimensional equations of motion for 
the inviscid flow then becomes (Andersson & Ytrehus 
1985)
 								      
	 	 (7)

which is equivalent to the one-dimensional version of  (2). 
Assuming zero velocity (and infinite film thickness) at the 
entrance x = 0, the simple free stream solution:
 
	 U(x) = (2gx)1/2,	 (8)

is readily obtained by the integration of (7). Incidentally, 
the inviscid solution (8) belongs to the important class of 
free streams U(x) ~ x", discovered by Falkner-Skan (1931), 
which arises in aerodynamic boundary layer flow along 
wedge-shaped bodies. Having this in view, we look for a 
similarity solution of equation (1) to (4) of the following 
form:

	 ψ = (4Uvx/3)1/2 f (η),  N = U(3U/4vx)1/2 h(η)	  	
	 	 (9)

where v is the kinematic viscosity and ψ(x, y) is the stream 
function, which is defined in the usual way as u = ∂ψ/∂y
and v = -∂ψ/∂x, and automatically satisfy equation (1). 
Substituting (9) into equation (2) to (4), the following 
system of ordinary differential equations is obtained:

	 	 (10)

	 	 (11)

	 2 f' i – 3 f i' = 0.	 (12)

subject to the boundary conditions:

	 		
	 (13)

where primes denote differentiation with respect to η. 
It is worth mentioning that setting K = 0 (Newtonian 
fluid) in (10) and (11) recovers the problem considered 
by Andersson and Ytrehus (1985). Further, integrating 
equation (12) with the boundary conditions (13), we 
get:

	 i = S f 2/3,	 (14)

where S is a constant of integration.

	 The physical quantity of interest is the skin friction 
coefficient Cf , which is defined as:
 								      
	 	 (15)

where the wall shear stress τw is defined as: 
								      
	 	 (16)

	 Using the variables (9), we get:
								      
	 	 (17)

where is the local Reynolds number which is defined as 
Rex = Ux/v.

RESULTS AND DISCUSSION

The ordinary differential equation (10) to (12) subject to the 
boundary conditions (13) are solved numerically using an 
implicit finite-difference scheme known as the Keller–box 
method as discussed in the book by Cebeci & Bradshaw 
(1988). The solution procedure can be summarized by the 
following four steps:
1. 	 Reduce (10) to (12) to a first-order system.
2. 	 Write the difference equations using central 

differences.
3. 	 Linearize the resulting algebraic equations by 

Newton’s method and write them in matrix-vector 
form.

4. 	 Using block-tridiagonal-elimination technique, solve 
the linear system obtained.

	 The values of the step size ∆η in η and the edge 
of boundary layer (η∞) have to be adjusted for different 
values of parameters to maintain accuracy. Throughout 
this study, we considered the value of ∆η = 0.02 and was 
found to be satisfactory for a convergence criterion of 
10-5 which gives four decimal places accuracy. On the 
other hand, the edge of the boundary layer chosen was 
between 5 and 10. It is worth mentioning that the numerical 
scheme used in the present study has been proven to be 
unconditionally stable and it is also the most flexible of 
the common methods, being easily adaptable to solving 
equations of any order (Cebeci & Bradshaw 1988). To 
verify the accuracy of the present method, the value of 
the reduced skin friction coefficient f"(0) is compared 
with that reported by Andersson and Ytrehus (1985) for 
K = 0 (Newtonian fluid) as presented in Table 1, and it is 
found to be in good agreement. Table 1 contains also the 
numerical values of the skin friction coefficient  
for various values of the material parameter K, namely K 
= 0 (Newtonian fluid), 1, 2 and 3 (micropolar fluid) with 
the constant of integration S = 1. It is seen from Table 1 
that the reduced skin friction coefficient f"(0) is lower for 
micropolar fluid than Newtonian fluid, while the trend 
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for the skin friction coefficient  is vice versa. This 
is due to the coefficient  in the skin friction 
coefficient . It is also observed that as K increases, 
f"(0) decreases while  increases.
	 Figure 2 and 3 show the velocity profiles f' (η)  and the 
microrotation or angular velocity profiles h(η) for various 
values of K, respectively, while Figure 4 and 5 illustrate 
the effects of S towards the velocity and angular velocity 
profiles for various values of K, namely K = 0.01, 1 and 3. It 
is seen from Figure 2 that the velocity profiles f' (η)  always 
start at η = 0 with f' (0) = 0, and once it reaches a certain 
thickness of the boundary layer, the velocity at this point 
onwards will maintain the value of 1 asymptotically, as 
given by the boundary conditions (13), i.e. f' (∞) = 1. These 
results show that increasing the material parameter K, 
namely transition from the Newtonian fluid to micropolar 
fluid leads to the deceleration of the velocity, which in 
turn decreases the velocity gradient at the surface η = 0, 
and hence produces decrement in the reduced skin friction 
coefficient f" (0). In addition, the boundary layer thickness 
increases as the material parameter K increases. It is seen 
from Figure 2 that the velocity gradients at the surface η 
= 0 are all positives, which physically corresponds to the 
fluid exerts a drag force on the surface. Further, it is seen 
from Figure 3 that the angular velocity h(η) validates the 

boundary conditions (13) at the surface and at the edge of 
boundary layer, and h(0) is slightly low for small values 
of K in the beginning of the layer until it reaches a certain 
value of η and the boundary layer thickness increases as 
the material parameter K increases. The microrotation or 
angular velocity exhibits different characteristic than the 
velocity and becomes zero far away from the surface which 
satisfies the boundary condition h(∞) = 0. This means that 
at the edge of boundary layer, the microrotation or angular 
velocity is zero.
	 On the other hand, Figures 4 and 5 show the effects 
of the constant of integration S on the velocity and 
microrotation profiles, respectively, as K is fixed to several 
values, i.e. 0.01, 1 and 3 (micropolar fluids). It should 
be pointed out that the parameter S does not have any 
significant impact towards the behaviour of the velocity 
and microrotation profiles, regardless of the values of the 
micropolar or material parameter K. It was observed that 
variation in S, i.e. different values of S, gave almost exactly 
the same profiles for each value of K.

CONCLUSION

In the present paper, we have studied theoretically the 
Falkner-Skan solution for gravity-driven film flow of 
a micropolar fluid. The governing partial differential 
equations were transformed using suitable transformation 
into ordinary differential equations and hence were solved 
numerically using the finite–difference scheme known as 
the Keller–box method. Numerical results for the reduced 
skin friction coefficient f" (0), the skin friction coefficient 

, the velocity profiles f' (η) and the microrotation 
or angular velocity profiles h(η) were presented in a table 
and some graphs. A comparison with the result reported by 
Andersson and Ytrehus (1985) was made when the material 
parameter K = 0 (Newtonian fluid) and the agreement was 

TABLE 1. Values of f" (0) and  for various values 
of K with S=1

K Andersson and Ytrehus (1985) f" (0) 

0 1.03890 1.0397 1.8008
1 0.8485 2.2045
2 0.7348 2.5454
3 0.6572 2.8458

	

η

f' 
(η

)

FIGURE 2. Velocity profiles f' (η) for various values 
of K when S=1

η

h(
η)

FIGURE 3. Microrotation or angular velocity profiles h (η) for 
various values of K when S=1
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very good.
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